leaspy.algo.fit.mcmc_saem ========================= .. py:module:: leaspy.algo.fit.mcmc_saem .. autoapi-nested-parse:: This module defines the `TensorMCMCSAEM` class. .. !! processed by numpydoc !! Classes ------- .. autoapisummary:: leaspy.algo.fit.mcmc_saem.TensorMcmcSaemAlgorithm Module Contents --------------- .. py:class:: TensorMcmcSaemAlgorithm(settings) Bases: :py:obj:`leaspy.algo.algo_with_device.AlgorithmWithDeviceMixin`, :py:obj:`leaspy.algo.algo_with_annealing.AlgorithmWithAnnealingMixin`, :py:obj:`leaspy.algo.algo_with_samplers.AlgorithmWithSamplersMixin`, :py:obj:`leaspy.algo.fit.base.FitAlgorithm`\ [\ :py:obj:`leaspy.models.McmcSaemCompatibleModel`\ , :py:obj:`leaspy.variables.state.State`\ ] Main algorithm for MCMC-SAEM. :Parameters: **settings** : :class:`~leaspy.algo.AlgorithmSettings` MCMC fit algorithm settings :Attributes: **samplers** : :obj:`dict` [:obj:`str`, :class:`~leaspy.samplers.AbstractSampler` ] Dictionary of samplers per each variable **random_order_variables** : :obj:`bool` (default True) This attribute controls whether we randomize the order of variables at each iteration. `Article `_ gives a reason on why we should activate this flag. **temperature** : :obj:`float` .. **temperature_inv** : :obj:`float` Temperature and its inverse are modified during algorithm if annealing is used .. seealso:: :mod:`leaspy.samplers` .. .. !! processed by numpydoc !! .. py:attribute:: name :type: leaspy.algo.base.AlgorithmName .. py:method:: log_current_iteration(state) .. py:method:: is_current_iteration_in_last_n() Return True if current iteration is within the last n realizations defined in logging settings. .. !! processed by numpydoc !! .. py:method:: should_current_iteration_be_saved() Return True if current iteration should be saved based on log saving periodicity. .. !! processed by numpydoc !!