leaspy.models.riemanian_manifold ================================ .. py:module:: leaspy.models.riemanian_manifold Classes ------- .. autoapisummary:: leaspy.models.riemanian_manifold.RiemanianManifoldModel Module Contents --------------- .. py:class:: RiemanianManifoldModel(name, variables_to_track = None, **kwargs) Bases: :py:obj:`leaspy.models.time_reparametrized.TimeReparametrizedModel` Manifold model for multiple variables of interest (logistic or linear formulation). :Parameters: **name** : :obj:`str` The name of the model. **\*\*kwargs** Hyperparameters of the model (including `noise_model`) :Raises: :exc:`.LeaspyModelInputError` * If hyperparameters are inconsistent .. !! processed by numpydoc !! .. py:method:: compute_sufficient_statistics(state) :classmethod: Compute the model's :term:`sufficient statistics`. :Parameters: **state** : :class:`.State` The state to pick values from. :Returns: SuffStatsRW The computed sufficient statistics. .. !! processed by numpydoc !! .. py:method:: get_variables_specs() Return the specifications of the variables (latent variables, derived variables, model 'parameters') that are part of the model. :Returns: NamedVariables A dictionary-like object mapping variable names to their specifications. These include `ModelParameter`, `Hyperparameter`, `PopulationLatentVariable`, and `LinkedVariable` instances. .. !! processed by numpydoc !! .. py:method:: metric(*, g) :staticmethod: :abstractmethod: .. py:method:: model_no_sources(*, rt, metric, v0, g) :classmethod: Return the model output when sources(spatial components) are not present. :Parameters: **rt** : :class:`torch.Tensor` The reparametrized time. **metric** : Any The metric tensor used for computing the spatial/temporal influence. **v0** : Any The values of the population parameter `v0` for each feature. **g** : Any The values of the population parameter `g` for each feature. :Returns: :class:`torch.Tensor` The model output without contribution from source shifts. .. rubric:: Notes This implementation delegates to `model_with_sources` with `space_shifts` set to a zero tensor of shape (1, 1), effectively removing source effects. .. !! processed by numpydoc !! .. py:method:: model_with_sources(*, rt, space_shifts, metric, v0, g) :classmethod: :abstractmethod: