leaspy.models.utils.attributes.linear_attributes ================================================ .. py:module:: leaspy.models.utils.attributes.linear_attributes Classes ------- .. autoapisummary:: leaspy.models.utils.attributes.linear_attributes.LinearAttributes Module Contents --------------- .. py:class:: LinearAttributes(name, dimension, source_dimension) Bases: :py:obj:`leaspy.models.utils.attributes.abstract_manifold_model_attributes.AbstractManifoldModelAttributes` Attributes of leaspy linear models. Contains the common attributes & methods to update the linear model's attributes. :Parameters: **name** : str .. **dimension** : int .. **source_dimension** : int .. :Attributes: **name** : str (default 'linear') Name of the associated leaspy model. **dimension** : int .. **source_dimension** : int .. **univariate** : bool Whether model is univariate or not (i.e. dimension == 1) **has_sources** : bool Whether model has sources or not (not univariate and source_dimension >= 1) **update_possibilities** : set[str] (default {'all', 'g', 'v0', 'betas'} ) Contains the available parameters to update. Different models have different parameters. **positions** : :class:`torch.Tensor` [dimension] (default None) positions = realizations['g'] such that "p0" = positions **velocities** : :class:`torch.Tensor` [dimension] (default None) Always positive: exp(realizations['v0']) **orthonormal_basis** : :class:`torch.Tensor` [dimension, dimension - 1] (default None) .. **betas** : :class:`torch.Tensor` [dimension - 1, source_dimension] (default None) .. **mixing_matrix** : :class:`torch.Tensor` [dimension, source_dimension] (default None) Matrix A such that w_i = A * s_i. .. seealso:: :class:`~leaspy.models.univariate_model.UnivariateModel` .. :class:`~leaspy.models.multivariate_model.MultivariateModel` .. .. !! processed by numpydoc !! .. py:method:: update(names_of_changed_values, values) Update model group average parameter(s). :Parameters: **names_of_changed_values** : set[str] Elements of set must be either: * ``all`` (update everything) * ``g`` correspond to the attribute :attr:`positions`. * ``v0`` (only for multivariate models) correspond to the attribute :attr:`velocities`. When we are sure that the v0 change is only a scalar multiplication (in particular, when we reparametrize log(v0) <- log(v0) + mean(xi)), we may update velocities using ``v0_collinear``, otherwise we always assume v0 is NOT collinear to previous value (no need to perform the verification it is - would not be really efficient) * ``betas`` correspond to the linear combination of columns from the orthonormal basis so to derive the :attr:`mixing_matrix`. **values** : dict [str, `torch.Tensor`] New values used to update the model's group average parameters :Raises: :exc:`.LeaspyModelInputError` If `names_of_changed_values` contains unknown parameters. .. !! processed by numpydoc !!