leaspy.models.utils.attributes.logistic_parallel_attributes =========================================================== .. py:module:: leaspy.models.utils.attributes.logistic_parallel_attributes Classes ------- .. autoapisummary:: leaspy.models.utils.attributes.logistic_parallel_attributes.LogisticParallelAttributes Module Contents --------------- .. py:class:: LogisticParallelAttributes(name, dimension, source_dimension) Bases: :py:obj:`leaspy.models.utils.attributes.abstract_manifold_model_attributes.AbstractManifoldModelAttributes` Attributes of leaspy logistic parallel models. Contains the common attributes & methods of the logistic parallel models' attributes. :Parameters: **name** : str .. **dimension** : int .. **source_dimension** : int .. :Attributes: **name** : str (default 'logistic_parallel') Name of the associated leaspy model. **dimension** : int .. **source_dimension** : int .. **has_sources** : bool Whether model has sources or not (source_dimension >= 1) **update_possibilities** : set[str] (default {'all', 'g', 'deltas', 'betas'} ) Contains the available parameters to update. Different models have different parameters. **positions** : :class:`torch.Tensor` (scalar) (default None) positions = exp(realizations['g']) such that "p0" = 1 / (1 + positions * exp(-deltas)) **deltas** : :class:`torch.Tensor` [dimension] (default None) deltas = [0, delta_2_realization, ..., delta_n_realization] **orthonormal_basis** : :class:`torch.Tensor` [dimension, dimension - 1] (default None) .. **betas** : :class:`torch.Tensor` [dimension - 1, source_dimension] (default None) .. **mixing_matrix** : :class:`torch.Tensor` [dimension, source_dimension] (default None) Matrix A such that w_i = A * s_i. :Raises: :exc:`.LeaspyModelInputError` if any inconsistent parameters for the model. .. seealso:: :class:`~leaspy.models.multivariate_parallel_model.MultivariateParallelModel` .. .. !! processed by numpydoc !! .. py:attribute:: deltas :type: torch.FloatTensor :value: None .. py:attribute:: update_possibilities .. py:method:: get_attributes() Returns the following attributes: ``positions``, ``deltas`` & ``mixing_matrix``. :Returns: positions: `torch.Tensor` .. deltas: `torch.Tensor` .. mixing_matrix: `torch.Tensor` .. .. !! processed by numpydoc !! .. py:method:: update(names_of_changed_values, values) Update model group average parameter(s). :Parameters: **names_of_changed_values** : set[str] Elements of set must be either: * ``all`` (update everything) * ``g`` correspond to the attribute :attr:`positions`. * ``deltas`` correspond to the attribute :attr:`deltas`. * ``betas`` correspond to the linear combination of columns from the orthonormal basis so to derive the :attr:`mixing_matrix`. **values** : dict [str, `torch.Tensor`] New values used to update the model's group average parameters :Raises: :exc:`.LeaspyModelInputError` If `names_of_changed_values` contains unknown parameters. .. !! processed by numpydoc !!