leaspy.models.utils.initialization.model_initialization ======================================================= .. py:module:: leaspy.models.utils.initialization.model_initialization Attributes ---------- .. autoapisummary:: leaspy.models.utils.initialization.model_initialization.XI_STD leaspy.models.utils.initialization.model_initialization.TAU_STD leaspy.models.utils.initialization.model_initialization.NOISE_STD leaspy.models.utils.initialization.model_initialization.SOURCES_STD Functions --------- .. autoapisummary:: leaspy.models.utils.initialization.model_initialization.initialize_parameters leaspy.models.utils.initialization.model_initialization.get_lme_results leaspy.models.utils.initialization.model_initialization.lme_init Module Contents --------------- .. py:data:: XI_STD :value: 0.5 .. py:data:: TAU_STD :value: 5.0 .. py:data:: NOISE_STD :value: 0.1 .. py:data:: SOURCES_STD :value: 1.0 .. py:function:: initialize_parameters(model, dataset, method='default') Initialize the model's group parameters given its name & the scores of all subjects. Under-the-hood it calls an initialization function dedicated for the `model`: * :func:`.initialize_linear` (including when `univariate`) * :func:`.initialize_logistic` (including when `univariate`) * :func:`.initialize_logistic_parallel` It is automatically called during :meth:`.Leaspy.fit`. :Parameters: **model** : :class:`.AbstractModel` The model to initialize. **dataset** : :class:`.Dataset` Contains the individual scores. **method** : str Must be one of: * ``'default'``: initialize at mean. * ``'random'``: initialize with a gaussian realization with same mean and variance. :Returns: **parameters** : dict [str, :class:`torch.Tensor`] Contains the initialized model's group parameters. :Raises: :exc:`.LeaspyInputError` If no initialization method is known for model type / method .. !! processed by numpydoc !! .. py:function:: get_lme_results(df, n_jobs=-1, *, with_random_slope_age=True, **lme_fit_kwargs) Fit a LME on univariate (per feature) time-series (feature vs. patients' ages with varying intercept & slope) :Parameters: **df** : :class:`pd.DataFrame` Contains all the data (with nans) **n_jobs** : int Number of jobs in parallel when multiple features to init Not used for now, buggy **with_random_slope_age** : bool (default True) Has LME model a random slope per age (otherwise only a random intercept). **\*\*lme_fit_kwargs** Kwargs passed to 'lme_fit' (such as `force_independent_random_effects`, default True) :Returns: dict {param: str -> param_values_for_ft: torch.Tensor(nb_fts, \*shape_param)} .. !! processed by numpydoc !! .. py:function:: lme_init(model, df, fact_std=1.0, **kwargs) Initialize the model's group parameters. :Parameters: **model** : :class:`.AbstractModel` The model to initialize (must be an univariate or multivariate linear or logistic manifold model). **df** : :class:`pd.DataFrame` Contains the individual scores (with nans). **fact_std** : float Multiplicative factor to apply on std-dev (tau, xi, noise) found naively with LME **\*\*kwargs** Additional kwargs passed to :func:`.get_lme_results` :Returns: **parameters** : dict [str, `torch.Tensor`] Contains the initialized model's group parameters. :Raises: :exc:`.LeaspyInputError` If model is not supported for this initialization .. !! processed by numpydoc !!