leaspy.variables.utilities ========================== .. py:module:: leaspy.variables.utilities Functions --------- .. autoapisummary:: leaspy.variables.utilities.compute_individual_parameter_std_from_sufficient_statistics Module Contents --------------- .. py:function:: compute_individual_parameter_std_from_sufficient_statistics(state, individual_parameter_values, individual_parameter_sqr_values, *, individual_parameter_name, dim, **kws) Maximization rule, from the sufficient statistics, of the standard-deviation of Gaussian prior for individual latent variables. :Parameters: **state** : :obj:`dict`[:obj:`str`, :class:`torch.Tensor`] The current state object that holds all the variables **individual_parameter_values** : :class:`torch.Tensor` Tensor containing individual parameter values, used to compute current means. **individual_parameter_sqr_values** : :class:`torch.Tensor` Tensor containing squared individual parameter values, used to compute variances. **individual_parameter_name** : :obj:`str` The name of the individual parameter for which to compute the std. **dim** : :obj:`int` The dimension along which to compute the mean and variance :Returns: :class:`torch.Tensor` The updated standard deviation of the Gaussian prior for the individual parameter .. !! processed by numpydoc !!