leaspy.io.logs.visualization¶
Submodules¶
Classes¶
Package Contents¶
- class Plotter(output_path=None)[source]¶
Class defining some plotting tools.
- Parameters:
- output_path
str, (optional) Folder where plots will be saved. If None, default to current working directory.
- output_path
- Parameters:
output_path (Optional[str])
- output_path = None¶
- plt_show()[source]¶
Display the current matplotlib figure if self._show is True.
This method wraps matplotlib.pyplot.show using the internal flags _show and _block to control interactive plotting.
- plot_mean_trajectory(model, *, n_pts=100, n_std_left=3, n_std_right=6, **kwargs)[source]¶
Plot the mean model trajectory.
- Parameters:
- model
McmcSaemCompatibleModelor iterable of such Model(s) to compute the mean trajectory for.
- n_pts
int, optional Number of timepoints to evaluate between the start and end. Default=100.
- n_std_left
int, optional How many standard deviations before the mean to plot. Default=3.
- n_std_right
int, optional How many standard deviations after the mean to plot. Default=6.
- **kwargs
- model
- Raises:
- LeaspyInputError
If the model(s) is/are not initialized.
- Parameters:
model (McmcSaemCompatibleModel)
n_pts (int)
n_std_left (int)
n_std_right (int)
- plot_mean_validity(model, results, **kwargs)[source]¶
Plot histogram of reparametrized times for all individuals.
- Parameters:
- model
McmcSaemCompatibleModel Fitted model providing tau_mean and tau_std.
- resultsobject
Results containing data and individual_parameters with keys
xiandtau.- **kwargs
save_as:str, filename to save the plot.
- model
- Parameters:
model (McmcSaemCompatibleModel)
- Return type:
None
- plot_patient_trajectory(model, results, indices, **kwargs)[source]¶
Plot observed data and reconstructed trajectory for one or more patients.
- Parameters:
- Parameters:
model (McmcSaemCompatibleModel)
- Return type:
None
- plot_from_individual_parameters(model, indiv_parameters, timepoints, **kwargs)[source]¶
Plot a trajectory computed from given individual parameters.
- Parameters:
- model
McmcSaemCompatibleModel Model used to compute the trajectory.
- indiv_parametersDictParamsTorch
Individual parameter dictionary.
- timepoints
torch.Tensor Timepoints at which to compute the trajectory.
- **kwargs
color: iterable of colors.save_as:str, filename to save the plot.
- model
- Parameters:
model (McmcSaemCompatibleModel)
indiv_parameters (DictParamsTorch)
timepoints (Tensor)
- Return type:
None
- plot_distribution(results, parameter, cofactor=None, **kwargs)[source]¶
Plot histogram(s) of an estimated parameter distribution.
- plot_correlation(results, parameter_1, parameter_2, cofactor=None, **kwargs)[source]¶
Plot scatter correlation between two parameters.
- plot_patients_mapped_on_mean_trajectory(model, results, *, n_std_left=2, n_std_right=4, n_pts=100)[source]¶
Plot observed patient values mapped onto the mean trajectory.
- Parameters:
- model
McmcSaemCompatibleModel Model used for computing mean and individual trajectories.
- resultsobject
Results containing data and individual parameters.
- n_std_left
int, optional How many standard deviations before the mean to plot. Default=2.
- n_std_right
int, optional How many standard deviations after the mean to plot. Default=4.
- n_pts
int, optional Number of timepoints to evaluate. Default=100.
- model
- Parameters:
model (McmcSaemCompatibleModel)
n_std_left (int)
n_std_right (int)
n_pts (int)
- Return type:
None
- classmethod plot_error(path, dataset, model, param_ind, colors=None, labels=None)[source]¶
- Parameters:
model (McmcSaemCompatibleModel)
- classmethod plot_patient_reconstructions(path, dataset, model, param_ind, *, max_patient_number=5, attribute_type=None)[source]¶
- Parameters:
path (str)
dataset (Dataset)
model (McmcSaemCompatibleModel)
param_ind (DictParamsTorch)
max_patient_number (int)
- class Plotting(model, output_path='.', palette='tab10', max_colors=10)[source]¶
Deprecated since version 1.2.
Class defining some plotting tools.
- Parameters:
- model
BaseModel The used model.
- output_path
str, (optional) Folder where plots will be saved. If None, default to current working directory.
- palette
str(palette name) ormatplotlib.colors.Colormap(ListedColormap or LinearSegmentedColormap) The palette to use.
- max_colors
int> 0, optional (default, corresponding to model nb of features) Only used if palette is a string
- model
- model¶
- color_palette = None¶
- standard_size = (8, 4)¶
- linestyle¶
- linewidth¶
- alpha¶
- output_path = '.'¶
- set_palette(palette, max_colors=None)[source]¶
Set palette of plots
- Parameters:
- palette
str(palette name) ormatplotlib.colors.Colormap(ListedColormap or LinearSegmentedColormap) The palette to use.
- max_colors
int> 0, optional (default, corresponding to model nb of features) Only used if palette is a string
- palette
- colors(at=None)[source]¶
Wrapper over color_palette iterator to get colors
- Parameters:
- atany legit color_palette arg (int, float or iterable of any of these) or None (default)
if None returns all colors of palette upto model dimension
- Returns:
- colorssingle color tuple (RGBA) or np.array of RGBA colors (number of colors x 4)
- average_trajectory(**kwargs)[source]¶
Plot the population average trajectories. They are parametrized by the population parameters derived during the calibration.
- Parameters:
- **kwargs
- alpha:
float, default 0.6 Matplotlib’s transparency option. Must be in [0, 1].
- alpha:
- linestyle: {‘-’, ‘–’, ‘-.’, ‘:’, ‘’, (offset, on-off-seq), …}
Matplotlib’s linestyle option.
- linewidth:
float Matplotlib’s linewidth option.
- linewidth:
- features: list[
str] Name of features (if set it must be a subset of model features) Default: all model features.
- features: list[
- colors: list[
str] Contains matplotlib compatible colors. At least as many as number of features.
- colors: list[
- labels: list[
str] Used to rename features in the plot. Exactly as many as number of features. Default: raw variable name of each feature
- labels: list[
- ax: matplotlib.axes.Axes
Axes object to modify, instead of creating a new one.
- figsize: tuple of int
The figure’s size.
- save_as:
str, default None Path to save the figure.
- save_as:
title:
str- n_tpts:
int Number of timepoints in plot (default: 100)
- n_tpts:
- n_std_left, n_std_right:
float(default: 3 and 6 resp.) Time window around tau_mean, expressed as times of max(tau_std, 4)
- n_std_left, n_std_right:
- Returns:
- patient_observations(data, patients_idx='all', individual_parameters=None, **kwargs)[source]¶
Plot patient observations
- Parameters:
- data
Data - patients_idx‘all’ (default),
stror list[str] Patients to display (by their ID).
- individual_parameters
IndividualParametersorpandas.DataFrame(as may be output by ip.to_dataframe()) or dict (Pytorch ip format), optional If not None, observations are plotted with respect to reparametrized ages.
- data
- patient_observations_reparametrized(data, individual_parameters, patients_idx='all', **kwargs)[source]¶
Plot patient observations (reparametrized ages)
- patient_trajectories(data, individual_parameters, patients_idx='all', reparametrized_ages=False, **kwargs)[source]¶
Plot patient observations together with model individual reconstruction
- Parameters:
- data
Data - individual_parameters
IndividualParametersorpandas.DataFrame(as may be output by ip.to_dataframe()) or dict (Pytorch ip format) - patients_idx‘all’ (default),
stror list[str] Patients to display (by their ID).
- reparametrized_ages
bool(default False) Should we plot trajectories in reparam age or not? to study source impact essentially
- **kwargs
cf.
_plot_model_trajectories()In particular, pass marker=None if you don’t want observations besides model
- data