leaspy.io.logs.visualization.plotting¶
Classes¶
Module Contents¶
- class Plotting(model, output_path='.', palette='tab10', max_colors=10)[source]¶
Deprecated since version 1.2.
Class defining some plotting tools.
- Parameters:
- model
BaseModel The used model.
- output_path
str, (optional) Folder where plots will be saved. If None, default to current working directory.
- palette
str(palette name) ormatplotlib.colors.Colormap(ListedColormap or LinearSegmentedColormap) The palette to use.
- max_colors
int> 0, optional (default, corresponding to model nb of features) Only used if palette is a string
- model
- model¶
- color_palette = None¶
- standard_size = (8, 4)¶
- linestyle¶
- linewidth¶
- alpha¶
- output_path = '.'¶
- set_palette(palette, max_colors=None)[source]¶
Set palette of plots
- Parameters:
- palette
str(palette name) ormatplotlib.colors.Colormap(ListedColormap or LinearSegmentedColormap) The palette to use.
- max_colors
int> 0, optional (default, corresponding to model nb of features) Only used if palette is a string
- palette
- colors(at=None)[source]¶
Wrapper over color_palette iterator to get colors
- Parameters:
- atany legit color_palette arg (int, float or iterable of any of these) or None (default)
if None returns all colors of palette upto model dimension
- Returns:
- colorssingle color tuple (RGBA) or np.array of RGBA colors (number of colors x 4)
- average_trajectory(**kwargs)[source]¶
Plot the population average trajectories. They are parametrized by the population parameters derived during the calibration.
- Parameters:
- **kwargs
- alpha:
float, default 0.6 Matplotlib’s transparency option. Must be in [0, 1].
- alpha:
- linestyle: {‘-’, ‘–’, ‘-.’, ‘:’, ‘’, (offset, on-off-seq), …}
Matplotlib’s linestyle option.
- linewidth:
float Matplotlib’s linewidth option.
- linewidth:
- features: list[
str] Name of features (if set it must be a subset of model features) Default: all model features.
- features: list[
- colors: list[
str] Contains matplotlib compatible colors. At least as many as number of features.
- colors: list[
- labels: list[
str] Used to rename features in the plot. Exactly as many as number of features. Default: raw variable name of each feature
- labels: list[
- ax: matplotlib.axes.Axes
Axes object to modify, instead of creating a new one.
- figsize: tuple of int
The figure’s size.
- save_as:
str, default None Path to save the figure.
- save_as:
title:
str- n_tpts:
int Number of timepoints in plot (default: 100)
- n_tpts:
- n_std_left, n_std_right:
float(default: 3 and 6 resp.) Time window around tau_mean, expressed as times of max(tau_std, 4)
- n_std_left, n_std_right:
- Returns:
- patient_observations(data, patients_idx='all', individual_parameters=None, **kwargs)[source]¶
Plot patient observations
- Parameters:
- data
Data - patients_idx‘all’ (default),
stror list[str] Patients to display (by their ID).
- individual_parameters
IndividualParametersorpandas.DataFrame(as may be output by ip.to_dataframe()) or dict (Pytorch ip format), optional If not None, observations are plotted with respect to reparametrized ages.
- data
- patient_observations_reparametrized(data, individual_parameters, patients_idx='all', **kwargs)[source]¶
Plot patient observations (reparametrized ages)
- patient_trajectories(data, individual_parameters, patients_idx='all', reparametrized_ages=False, **kwargs)[source]¶
Plot patient observations together with model individual reconstruction
- Parameters:
- data
Data - individual_parameters
IndividualParametersorpandas.DataFrame(as may be output by ip.to_dataframe()) or dict (Pytorch ip format) - patients_idx‘all’ (default),
stror list[str] Patients to display (by their ID).
- reparametrized_ages
bool(default False) Should we plot trajectories in reparam age or not? to study source impact essentially
- **kwargs
cf.
_plot_model_trajectories()In particular, pass marker=None if you don’t want observations besides model
- data