leaspy.variables.utilities¶
Functions¶
|
Maximization rule, from the sufficient statistics, of the standard-deviation of Gaussian prior for individual latent variables. |
Module Contents¶
- compute_individual_parameter_std_from_sufficient_statistics(state, individual_parameter_values, individual_parameter_sqr_values, *, individual_parameter_name, dim, **kws)[source]¶
Maximization rule, from the sufficient statistics, of the standard-deviation of Gaussian prior for individual latent variables.
- Parameters:
- state
dict`[:obj:`str,torch.Tensor] The current state object that holds all the variables
- individual_parameter_values
torch.Tensor Tensor containing individual parameter values, used to compute current means.
- individual_parameter_sqr_values
torch.Tensor Tensor containing squared individual parameter values, used to compute variances.
- individual_parameter_name
str The name of the individual parameter for which to compute the std.
- dim
int The dimension along which to compute the mean and variance
- state
- Returns:
torch.TensorThe updated standard deviation of the Gaussian prior for the individual parameter
- Parameters: