leaspy.models.lme¶
Classes¶
LMEModel is a benchmark model that fits and personalize a linear mixed-effects model. |
Module Contents¶
- class LMEModel(name, with_random_slope_age=True, **kwargs)[source]¶
Bases:
leaspy.models.stateless.StatelessModelLMEModel is a benchmark model that fits and personalize a linear mixed-effects model.
The model specification is the following:
\[y_{ij} = fixed_{intercept} + random_{intercept_i} + (fixed_{slopeAge} + random_{slopeAge_i}) * age_{ij} + \epsilon_{ij}\]- with:
\(y_{ij}\): value of the feature of the i-th subject at his j-th visit,
\(age_{ij}\): age of the i-th subject at his j-th visit.
\(\epsilon_{ij}\): residual Gaussian noise (independent between visits)
Warning
This model must be fitted on one feature only (univariate model).
TODO? add some covariates in this very simple model.
- Parameters:
- Attributes:
- name
str The model’s name.
- is_initialized
bool Trueif the model is initialized,Falseotherwise.- with_random_slope_age
bool(defaultTrue) Has the LME a random slope for subject’s age? Otherwise it only has a random intercept per subject.
- features
listofstr List of the model features.
Warning
LME has only one feature.
- dimension
int Will always be 1 (univariate).
- parameters
dict - Contains the model parameters. In particular:
ages_meanfloatMean of ages (for normalization).
ages_stdfloatStd-dev of ages (for normalization).
fe_paramsnp.ndarrayoffloatFixed effects.
cov_renp.ndarrayVariance-covariance matrix of random-effects.
cov_re_unscaled_invnp.ndarrayInverse of unscaled (= divided by variance of noise) variance-covariance matrix of random-effects. This matrix is used for personalization to new subjects.
noise_stdfloatStd-dev of Gaussian noise.
bse_fe,bse_renp.ndarrayoffloatStandard errors on fixed-effects and random-effects respectively (not used in
Leaspy).
- name
- Parameters:
See also
LMEFitAlgorithmLMEPersonalizeAlgorithm
- with_random_slope_age = True¶
- dimension = 1¶
Number of features.
- Returns:
int, optionalThe dimension of the model, or None if not initialized.
- property hyperparameters: DictParamsTorch¶
Dictionary of values for model hyperparameters.
- Return type:
- compute_individual_trajectory(timepoints, individual_parameters)[source]¶
Compute scores values at the given time-point(s) given a subject’s individual parameters.
- Parameters:
- timepointsarray-like of ages (not normalized)
Timepoints to compute individual trajectory at.
- individual_parameters
dict - Individual parameters:
random_intercept
random_slope_age (if
with_random_slope_age == True)
- Returns:
torch.TensoroffloatThe individual trajectories. The shape of the tensor is
(n_individuals == 1, n_tpts == len(timepoints), n_features == 1).
- Parameters:
individual_parameters (IndividualParameters)
- Return type: