References¶
This page contains all the scientific references of the documentation.
H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6):716–723, 1974. doi:10.1109/TAC.1974.1100705.
Maha Alsefri, Maria Sudell, Marta García-Fiñana, and Ruwanthi Kolamunnage-Dona. Bayesian joint modelling of longitudinal and time to event data: a methodological review. BMC Medical Research Methodology, 20(1):94, April 2020. URL: https://doi.org/10.1186/s12874-020-00976-2 (visited on 2022-07-26), doi:10.1186/s12874-020-00976-2.
Eleni-Rosalina Andrinopoulou, D Rizopoulos, Johanna Jm Takkenberg, and E Lesaffre. Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data. Statistical Methods in Medical Research, 26(4):1787–1801, August 2017. URL: http://journals.sagepub.com/doi/10.1177/0962280215588340 (visited on 2024-02-09), doi:10.1177/0962280215588340.
P. Blanche, M. W. Kattan, and T. A. Gerds. The c-index is not proper for the evaluation of predicted risks for specific years. Statistics in Medicine, 38(14):2682–2697, 2019. doi:10.1002/sim.8042.
T. Chai and R. R. Draxler. Root mean square error (rmse) or mean absolute error (mae)? – arguments against avoiding rmse in the literature. Geoscientific Model Development, 7(3):1247–1254, 2014. doi:10.5194/gmd-7-1247-2014.
Raphael Couronne, Marie Vidailhet, Jean Christophe Corvol, Stephane Lehericy, and Stanley Durrleman. Learning Disease Progression Models With Longitudinal Data and Missing Values. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 1033–1037. April 2019. ISSN: 1945-8452. URL: https://ieeexplore.ieee.org/abstract/document/8759198 (visited on 2025-05-07), doi:10.1109/ISBI.2019.8759198.
P. Daxberger and et al. Laplace approximation for bayesian inference. In Proceedings of NeurIPS, 1–8. 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/a7c9585703d275249f30a088cebba0ad-Abstract.html.
Stanley Durrleman, Xavier Pennec, Alain Trouvé, and Nicholas Ayache. Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. International journal of computer vision, 103(1):22–59, 2013.
J. Fox. Applied Regression Analysis and Generalized Linear Models. Sage Publications, 2015.
Andrew Gelman and Donald B. Rubin. Inference from iterative simulation using multiple sequences. Statistical Science, 7(4):457–472, 1992.
Paul H. Gordon, Bin Cheng, Francois Salachas, Pierre-Francois Pradat, Gaelle Bruneteau, Philippe Corcia, Lucette Lacomblez, and Vincent Meininger. Progression in als is not linear but is curvilinear. Journal of Neurology, 257(10):1713–1717, October 2010. doi:10.1007/s00415-010-5609-1.
E. Graf, C. Schmoor, W. Sauerbrei, and M. Schumacher. Assessment and comparison of prognostic classification schemes for survival data. Statistical Medicine, 18(17-18):2529–2545, 1999. doi:10.1002/(sici)1097-0258(19990915/30)18:17/18<2529::aid-sim274>3.0.co;2-5.
H. Hung and C. T. Chiang. Estimation methods for time-dependent auc models with survival data. Canadian Journal of Statistics, 38(1):8–26, 2010.
Joseph G. Ibrahim, Haitao Chu, and Liddy M. Chen. Basic concepts and methods for joint models of longitudinal and survival data. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(16):2796–2801, June 2010. doi:10.1200/JCO.2009.25.0654.
Sofia Kaisaridi, Dominique Herve, Aude Jabouley, Sonia Reyes, Carla Machado, Stéphanie Guey, Abbas Taleb, Fanny Fernandes, Hugues Chabriat, and Sophie Tezenas Du Montcel. Determining Clinical Disease Progression in Symptomatic Patients With CADASIL. Neurology, 104(1):e210193, January 2025. doi:10.1212/WNL.0000000000210193.
Igor Koval. Learning Multimodal Digital Models of Disease Progression from Longitudinal Data : Methods & Algorithms for the Description, Prediction and Simulation of Alzheimer’s Disease Progression. phdthesis, Institut Polytechnique de Paris, January 2020. URL: https://theses.hal.science/tel-02524279 (visited on 2025-05-07).
Igor Koval, Alexandre Bône, Maxime Louis, Thomas Lartigue, Simona Bottani, Arnaud Marcoux, Jorge Samper-González, Ninon Burgos, Benjamin Charlier, Anne Bertrand, Stéphane Epelbaum, Olivier Colliot, Stéphanie Allassonnière, and Stanley Durrleman. AD Course Map charts Alzheimer's disease progression. Scientific Reports, 11(1):8020, April 2021. doi:10.1038/s41598-021-87434-1.
Igor Koval, Thomas Dighiero-Brecht, Allan J. Tobin, Sarah J. Tabrizi, Rachael I. Scahill, Sophie Tezenas du Montcel, Stanley Durrleman, and Alexandra Durr. Forecasting individual progression trajectories in Huntington disease enables more powered clinical trials. Scientific Reports, 12(1):18928, November 2022. Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/s41598-022-18848-8 (visited on 2025-05-07), doi:10.1038/s41598-022-18848-8.
J. Lambert and S. Chevret. Summary measure of discrimination in survival models based on cumulative/dynamic time-dependent roc curves. Statistical Methods in Medical Research, 2014.
E. Lesaffre, D. Rizopoulos, and R. Tsonaka. The logistic transform for bounded outcome scores. Biostatistics, 8(1):72–85, 2007. URL: https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxj034, doi:10.1093/biostatistics/kxj034.
Etienne Maheux, Igor Koval, Juliette Ortholand, Colin Birkenbihl, Damiano Archetti, Vincent Bouteloup, Stéphane Epelbaum, Carole Dufouil, Martin Hofmann-Apitius, and Stanley Durrleman. Forecasting individual progression trajectories in Alzheimer’s disease. Nature Communications, 14(1):761, February 2023. Publisher: Nature Publishing Group. URL: https://www.nature.com/articles/s41467-022-35712-5 (visited on 2025-05-07), doi:10.1038/s41467-022-35712-5.
Răzvan V. Marinescu, Neil P. Oxtoby, Alexandra L. Young, Esther E. Bron, Arthur W. Toga, Michael W. Weiner, Frederik Barkhof, Nick C. Fox, Polina Golland, Stefan Klein, and Daniel C. Alexander. TADPOLE Challenge: Accurate Alzheimer’s disease prediction through crowdsourced forecasting of future data. PRedictive Intelligence in MEdicine. PRIME (Workshop), 11843:1–10, October 2019. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7315046/ (visited on 2025-05-07), doi:10.1007/978-3-030-32281-6_1.
Geoffrey J. McLachlan and David Peel. Finite Mixture Models. Wiley, New York, 2000. ISBN 978-0-471-00626-8.
R. Millar. Bayesian model checking. Statistical Modelling, 18(4):417–435, 2018.
Paul Moulaire, Pierre Emmanuel Poulet, Emilien Petit, Thomas Klockgether, Alexandra Durr, Tetsuo Ashisawa, Sophie Tezenas du Montcel, and READISCA Consortium. Temporal Dynamics of the Scale for the Assessment and Rating of Ataxia in Spinocerebellar Ataxias. Movement Disorders: Official Journal of the Movement Disorder Society, 38(1):35–44, January 2023. doi:10.1002/mds.29255.
S. Nakagawa and H. Schielzeth. A general and simple method for obtaining r2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 3(2):129–142, 2012. doi:10.1111/j.2041-210X.2012.00261.x.
Juliette Ortholand. Joint modelling of events and repeated observations : an application to the progression of Amyotrophic Lateral Sclerosis. phdthesis, Sorbonne Université, September 2024. URL: https://theses.hal.science/tel-04770912 (visited on 2025-05-07).
Juliette Ortholand, Stanley Durrleman, and Sophie Tezenas du Montcel. A joint spatiotemporal model for multiple longitudinal markers and competing events. January 2025. arXiv:2501.08960 [stat]. URL: http://arxiv.org/abs/2501.08960 (visited on 2025-05-07), doi:10.48550/arXiv.2501.08960.
Juliette Ortholand, Pierre-François Pradat, Sophie Tezenas du Montcel, and Stanley Durrleman. Interaction of sex and onset site on the disease trajectory of amyotrophic lateral sclerosis. Journal of Neurology, 270(12):5903–5912, December 2023. doi:10.1007/s00415-023-11932-7.
Pierre-Emmanuel Poulet and Stanley Durrleman. Multivariate disease progression modeling with longitudinal ordinal data. Statistics in Medicine, 42(18):3164–3183, 2023. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.9770. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.9770 (visited on 2025-05-07), doi:10.1002/sim.9770.
Pierre-Emmanuel Poulet, Maylis Tran, Sophie Tezenas du Montcel, Bruno Dubois, Stanley Durrleman, and Bruno Jedynak. Prediction-powered Inference for Clinical Trials. January 2025. Pages: 2025.01.15.25320578. URL: https://www.medrxiv.org/content/10.1101/2025.01.15.25320578v1 (visited on 2025-05-14), doi:10.1101/2025.01.15.25320578.
R. L. Prentice and L. A. Gloeckler. Regression analysis of grouped survival data with application to breast cancer data. Biometrics, 34(1):57–67, 1978. URL: http://www.jstor.org/stable/2529588 (visited on 2025-05-15).
Cécile Proust-Lima, Mbéry Séne, Jeremy MG Taylor, and Hélène Jacqmin-Gadda. Joint latent class models for longitudinal and time-to-event data: A review. Statistical Methods in Medical Research, 23(1):74–90, February 2014. Publisher: SAGE Publications Ltd STM. URL: https://doi.org/10.1177/0962280212445839 (visited on 2024-04-18), doi:10.1177/0962280212445839.
Dimitris Rizopoulos and Pulak Ghosh. A Bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Statistics in Medicine, 30(12):1366–1380, 2011. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.4205. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4205 (visited on 2023-03-28), doi:10.1002/sim.4205.
Virginie Rondeau, Yassin Mazroui, and Juan R. Gonzalez. \textbf frailtypack : An \textit R Package for the Analysis of Correlated Survival Data with Frailty Models Using Penalized Likelihood Estimation or Parametrical Estimation. Journal of Statistical Software, 2012. URL: http://www.jstatsoft.org/v47/i04/ (visited on 2024-04-09), doi:10.18637/jss.v047.i04.
Jean-Baptiste Schiratti, Stéphanie Allassonnière, Olivier Colliot, and Stanley Durrleman. A Bayesian Mixed-Effects Model to Learn Trajectories of Changes from Repeated Manifold-Valued Observations. Journal of Machine Learning Research, 18(133):1–33, 2017. URL: http://jmlr.org/papers/v18/17-197.html.
G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6(2):461–464, 1978. doi:10.1214/aos/1176344136.
Anastasios A. Tsiatis and Marie Davidian. JOINT MODELING OF LONGITUDINAL AND TIME-TO-EVENT DATA: AN OVERVIEW. Statistica Sinica, 14(3):809–834, 2004. URL: http://www.jstor.org/stable/24307417 (visited on 2025-12-15), arXiv:24307417.
A. Vehtari, A. Gelman, and J. Gabry. Practical bayesian model evaluation using leave-one-out cross-validation and waic. Statistics and Computing, 27(5):1413–1432, 2017. URL: https://arxiv.org/pdf/1507.04544.
Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner. Rank-normalization, folding, and localization: an improved rˆ for assessing convergence of mcmc (with discussion). Bayesian Analysis, June 2021. URL: http://dx.doi.org/10.1214/20-BA1221, doi:10.1214/20-ba1221.
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:10.1038/s41592-019-0686-2.
S. Watanabe. Asymptotic equivalence of the bayesian and widely applicable information criteria. Journal of Machine Learning Research, 11:3571–3594, 2010. URL: https://www.jmlr.org/papers/volume11/watanabe10a/watanabe10a.pdf.
C. J. Willmott and K. Matsuura. Advantages of the mean absolute error (mae) over the root mean square error (rmse). Climate Research, 30(1):79–82, 2005.