leaspy.models.utils.attributes.logistic_parallel_attributes¶
Classes¶
Attributes of leaspy logistic parallel models. |
Module Contents¶
- class LogisticParallelAttributes(name, dimension, source_dimension)[source]¶
Bases:
leaspy.models.utils.attributes.abstract_manifold_model_attributes.AbstractManifoldModelAttributesAttributes of leaspy logistic parallel models.
Contains the common attributes & methods of the logistic parallel models’ attributes.
- Parameters:
- namestr
- dimensionint
- source_dimensionint
- Attributes:
- namestr (default ‘logistic_parallel’)
Name of the associated leaspy model.
- dimensionint
- source_dimensionint
- has_sourcesbool
Whether model has sources or not (source_dimension >= 1)
- update_possibilitiesset[str] (default {‘all’, ‘g’, ‘deltas’, ‘betas’} )
Contains the available parameters to update. Different models have different parameters.
- positions
torch.Tensor(scalar) (default None) positions = exp(realizations[‘g’]) such that “p0” = 1 / (1 + positions * exp(-deltas))
- deltas
torch.Tensor[dimension] (default None) deltas = [0, delta_2_realization, …, delta_n_realization]
- orthonormal_basis
torch.Tensor[dimension, dimension - 1] (default None) - betas
torch.Tensor[dimension - 1, source_dimension] (default None) - mixing_matrix
torch.Tensor[dimension, source_dimension] (default None) Matrix A such that w_i = A * s_i.
- Raises:
LeaspyModelInputErrorif any inconsistent parameters for the model.
See also
MultivariateParallelModel
- deltas: torch.FloatTensor = None¶
- update_possibilities¶
- get_attributes()[source]¶
Returns the following attributes:
positions,deltas&mixing_matrix.- Returns:
- positions: torch.Tensor
- deltas: torch.Tensor
- mixing_matrix: torch.Tensor
- update(names_of_changed_values, values)[source]¶
Update model group average parameter(s).
- Parameters:
- names_of_changed_valuesset[str]
- Elements of set must be either:
all(update everything)gcorrespond to the attributepositions.deltascorrespond to the attributedeltas.betascorrespond to the linear combination of columns from the orthonormal basis so to derive themixing_matrix.
- valuesdict [str, torch.Tensor]
New values used to update the model’s group average parameters
- Raises:
LeaspyModelInputErrorIf names_of_changed_values contains unknown parameters.